24. Thomas Jefferson Planning Region Local Action Plan Summary

WILDLIFE ACTION PLAN AND LOCAL SUMMARIES OVERVIEW

Wildlife Action Plan

Virginia is fortunate to contain a wide variety of natural resources and landscapes that provide Virginians with a range of benefits, services, and economic opportunities. Natural resource conservation in Virginia, as in most states, is implemented by government agencies, non-governmental organizations, private institutions, academic institutions, and private citizens. These groups work to enhance the quality of life within the Commonwealth by conserving Virginia's air, land, water, and wildlife. Adequate funding and human capital needed to manage and conserve these valuable resources are not always available. In 2005, Virginia's conservation community first came together to maximize the benefits of their actions and created the state's first Wildlife Action Plan (Action Plan). It was written to prioritize and focus conservation efforts to prevent species from declining to the point where they become threatened or endangered (DGIF 2005). The 2015 Action Plan is an update of the original Plan. The Action Plan must address eight specific elements mandated by Congress. They are:

- 1. Information on the distribution and abundance of species of wildlife, including low and declining populations as the state fish and wildlife agency deems appropriate, that are indicative of the diversity and health of the state's wildlife; and
- 2. Descriptions of locations and relative condition of key habitats and community types essential to conservation of species identified in (1); and
- 3. Descriptions of problems which may adversely affect species identified in (1) or their habitats, and priority research and survey efforts needed to identify factors which may assist in restoration and improved conservation of these species and habitats; and
- 4. Descriptions of conservation actions determined to be necessary to conserve the identified species and habitats and priorities for implementing such actions; and
- 5. Proposed plans for monitoring species identified in (1) and their habitats, for monitoring the effectiveness of the conservation actions proposed in (4), and for adapting these conservation actions to respond appropriately to new information or changing conditions; and
- 6. Descriptions of procedures to review the Plan-Strategy at intervals not to exceed ten years; and
- 7. Plans for coordinating, to the extent feasible, the development, implementation, review, and revision of the Plan-Strategy with federal, state, and local agencies and Indian tribes that manage significant land and water areas within the state or

administer programs that significantly affect the conservation of identified species and habitats.

8. Congress has affirmed through Wildlife Conservation and Restoration Program (WCRP) and State Wildlife Grants (SWG), that broad public participation is an essential element of developing and implementing these Plans-Strategies, the projects that are carried out while these Plans-Strategies are developed, and the Species in Greatest Need of Conservation (SGCN) that Congress has indicated such programs and projects are intended to emphasize.

Each species included in the 2015 Action Plan (Species of Greatest Conservation Need or SGCN) has been evaluated and prioritized based upon two criteria: degree of imperilment and management opportunity.

To describe imperilment, SGCN are grouped into one of four Tiers: Critical (Tier I), Very High (Tier III), and Moderate (Tier IV).

Tier I - Critical Conservation Need. Species face an extremely high risk of extinction or extirpation. Populations of these species are at critically low levels, face immediate threat(s), and/ or occur within an extremely limited range. Intense and immediate management action is needed.

Tier II - Very High Conservation Need. Species have a high risk of extinction or extirpation. Populations of these species are at very low levels, face real threat(s), and/or occur within a very limited distribution. Immediate management is needed for stabilization and recovery.

Tier III - High Conservation Need. Extinction or extirpation is possible. Populations of these species are in decline, have declined to low levels, and/ or are restricted in range. Management action is needed to stabilize or increase populations.

Tier IV - Moderate Conservation Need. The species may be rare in parts of its range, particularly on the periphery. Populations of these species have demonstrated a declining trend or a declining trend is suspected which, if continued, is likely to qualify this species for a higher tier in the foreseeable future. Long-term planning is necessary to stabilize or increase populations.

While degree of imperilment is an important consideration, it is often insufficient to prioritize the use of limited human and financial resources. In order to identify and triage conservation opportunities, development of the updated Action Plan (2015) included assigning a Conservation Opportunity Ranking to each species identified within the Plan. Rankings were assigned with input from taxa or species experts (biologists) and other members of Virginia's conservation community. They also are based on conservation or management actions and research needs identified for the species within the 2005 Action Plan. In addition, a literature review was conducted to garner any new information available since the first version of the Action Plan. The three Conservation Opportunity Rankings are described as follows:

A – Managers have identified "on the ground" species or habitat management strategies expected to benefit the species; at least some of which can be implemented with existing resources and are expected to have a reasonable chance of improving the species' conservation status.

B – Managers have only identified research needs for the species or managers have only identified "on the ground" conservation actions that cannot be implemented due to lack of personnel, funding, or other circumstance.

C – Managers have failed to identify "on the ground" actions or research needs that could benefit this species or its habitat or all identified conservation opportunities for a species have been exhausted.

Over 880 SGCN are listed in the 2015 Action Plan and found in varying densities across the state (Figure 1). Of the Plan's SGCN, 23.4 percent are classified as Conservation Opportunity Ranking A; 7.1 percent are classified Conservation Opportunity Ranking B; and 69.5 percent are classified as Conservation Opportunity Ranking C. Additionally, of the 883 SGCN:

- Approximately 25% of the SGCN are already listed as threatened or endangered under the Federal or Virginia Endangered Species Act,
- Approximately 60% are aquatic,
- Approximately 70% are invertebrates, and
- All are impacted by the loss or degradation of their habitats.

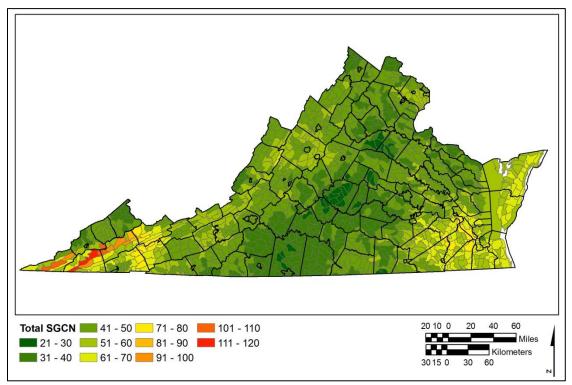


Figure 1. State Distribution of Species of Greatest Conservation Need by HUC12 Watersheds.

Wildlife Action Plan Implementation

Since its creation, the Wildlife Action Plan has helped Virginia acquire over \$17 million in new conservation funding through the State Wildlife Grants Program. These resources have been used to implement significant research, advance species recovery efforts via captive propagation, and restore and conserve important wildlife habitats. Despite these successes, many conservation practitioners feel the original Wildlife Action Plan never reached its full potential. One common concern is that it failed to focus at the habitat level where the needs of many species could be addressed at once. Further, many partners indicated the original Action Plan did not provide sufficient details to help prioritize conservation needs and opportunities at a local scale, where many land use decisions are made, and conservation efforts are implemented. Lacking these local insights, it was often difficult for agencies, municipalities, organizations, academic institutions, and landowners to identify and focus on the highest priority wildlife conservation opportunities for their geographic area. To address this concern and make the Action Plan more user-friendly and relevant at a finer scale, this version (2015) of the Action Plan was developed to include locally-based summaries. These summaries identify species that are local priorities, habitats required to conserve those species, regional threats impacting species and habitats, and priority conservation actions that can be taken to address those threats. The goal of these summaries is to facilitate and benefit the work of local governments, conservation groups, landowners, and other members of the conservation community who wish to support wildlife conservation within their regions.

Local Action Plan Summaries

In creating the updated Action Plan, the Virginia Department of Game and Inland Fisheries (DGIF) adopted a model developed by the Virginia Department of Conservation and Recreation (DCR) for the Virginia Outdoors Plan. The Virginia Outdoors Plan describes recreational resource issues for 21 multi-county Recreational Planning Regions. Each Recreational Planning Region is roughly analogous to one of Virginia's 21 local Planning District Commissions (PDC). The PDCs are voluntary associations of local governments intended to foster intergovernmental cooperation by bringing together local officials, agency staff, the public, and partners to discuss common needs and develop solutions to regional issues. With its focus on local-scale actions, the Virginia Outdoors Plan has become an important tool for identifying and addressing local recreational issues. This DCR model was adapted and used in this Action Plan to address wildlife and habitat issues for the benefit of planning region residents. More broadly, the new Action Plan's Local Action Plan Summaries will create a framework that Virginia's diverse conservation community can use to identify issues and locations of mutual conservation interest, enhance collaborative opportunities, develop new conservation resources, and craft "win-win" situations that can be beneficial for both the people and wildlife of Virginia.

THOMAS JEFFERSON PLANNING REGION SUMMARY OVERVIEW

The Thomas Jefferson Planning Region consists of 1,389,635 acres (2,171 square miles) and includes the counties of Albemarle, Fluvanna, Greene, Louisa, and Nelson and the city of Charlottesville. The human population in this planning region is estimated to be over 244,000 (U.S. Census Bureau 2015). Significant human population growth is expected by 2020, ranging from a rate of 3.2 percent in Nelson County to almost 23 percent in Louisa County (DCR 2013).

Less developed and more rural areas often provide a diversity of valuable wildlife habitats, which can be degraded or lost as human populations grow or extractive uses expand. This planning region contains aquatic habitats for a range of SGCN, including Virginia Piedmont water boatman, James spinymussel, and green smooth snake. Its karst systems provide habitat for the Blue Ridge springsnail. The planning region also includes a variety of other habitats such as mixed hardwood and conifer forests, young forests, retired agricultural land, non-tidal wetlands, and warm and cold water freshwater streams and riparian habitats (Figure 2).

In developing conservation actions for habitats and priority species within this planning region, a number of factors must be considered to determine how limited resources can be allocated to best effect. A project's likely impact and probability of success, the effectiveness of historic and ongoing conservation actions, as well as logistical, economic, and political factors will all influence the selection and prioritization of conservation actions. Virginia's Wildlife Action Plan advocates a proactive approach that focuses conservation resources to manage species before they become critically imperiled and to implement projects that can simultaneously benefit multiple species and human communities. These factors were considered during development of the conservation actions included in the following sections as well as in analyzing the existing threats facing SGCN and their habitats. Threats and conservation actions are organized based on the habitat types found within this planning region upon which priority SGCN depend.

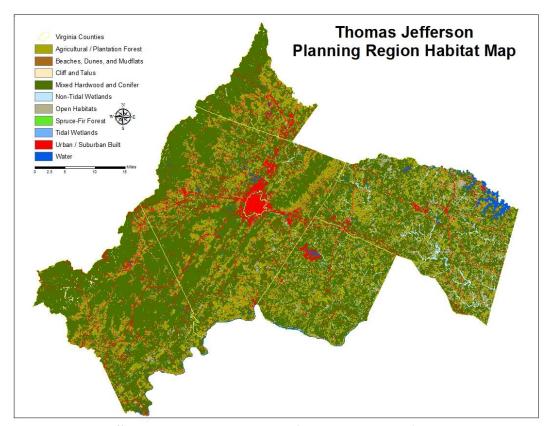
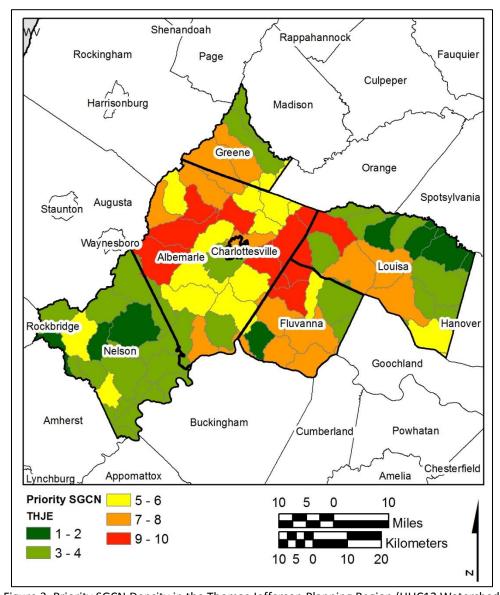


Figure 2. Thomas Jefferson Planning Region Habitats (Anderson et al. 2013).

Priority Species of Greatest Conservation Need


Of Virginia's 883 SGCN, 88 are believed to either occur, or have recently occurred, within the Thomas Jefferson Planning Region (Appendix A). Of these 88 species, 42 SGCN are dependent upon habitats provided within the Thomas Jefferson Planning Region (Figure 2). These species constitute the priority SGCN for the region. A summary of SGCN Tier and Conservation Opportunity Rankings is provided in Table 1, while Figure 3 demonstrates the density of the 42 priority species within this region.

Priority SGCNs within this Local Summary include species for which this planning region comprises a significant portion of its range in Virginia. To determine species priority, the authors implemented a 10 percent rule to identify locally important species. Under the 10 percent rule, an SGCN is included in a Local Summary if the planning region provides at least 10 percent of that species' range in Virginia. However, there are several other instances that warrant inclusion on a planning region's priority SGCN list. First, several SGCN occur statewide but in low numbers in each planning region and will never reach the 10 percent threshold in any single planning region. Species that fall in this category were manually added to priority SGCN lists where appropriate. Some species only occur in three or fewer planning regions. These SGCN are also included on priority lists for the planning regions in which they are found due to their rarity in the state and the importance of those few planning regions to their survival. For migrant species that may only be in Virginia for a matter of days, these migratory habitats are considered critical

for their long-term conservation. When these circumstances were identified, specific migratory species were manually added to local SGCN lists as well. Finally, where a species may have a particularly strong population in a relatively small portion of a planning region, the population may be determined to be significant enough to warrant inclusion on the local SGCN list. Again, when these circumstances were identified, species were manually added to the local priority SGCN list.

Table 1. Tier and Conservation Opportunity Ranking Distribution among Priority SGCN.

Tier and Conservation Opportunity Rank	Number of SGCN
la	1
lb	2
Ic	2
lla	3
IIc	1
IIIa	7
IIIb	1
IIIc	3
IVa	13
IVb	7
IVc	2

 $Figure\ 3.\ Priority\ SGCN\ Density\ in\ the\ Thomas\ Jefferson\ Planning\ Region\ (HUC12\ Watersheds).$

Table2. Priority Species of Greatest Conservation Need Distribution in the Thomas Jefferson Planning Region.

Таха	Conservation Status	Tier	Opportunity Ranking	Common Name	Scientific Name	Habitat
Bird		III	С	Bank swallow	Riparia riparia	Habitat includes open and partly open situations, frequently near flowing water. Nests are in steep sand, dirt, or gravel banks, in burrows dug near the top of the bank, along the edge of inland water, or along the coast, or in gravel pits, road embankments, etc.
Bird		III	а	Barn owl	Tyto alba	Fields of dense grass. Open and partly open country (grassland, marsh, lightly grazed pasture, hayfields) in a wide variety of situations, often around human habitation
Bird		III	b	Belted kingfisher	Megaceryle alcyon	Primarily along water, both freshwater and marine, including lakes, streams, wooded creeks and rivers, seacoasts, bays, estuaries, and mangroves. Perches in trees, on over hanging branches, posts and utility wires
Bird		IV	а	Black-and-white warbler	Mniotilta varia	Habitat generalist with broad habitat tolerances
Bird		IV	a	Brown thrasher	Toxostoma rufum	Thickets and bushy areas in deciduous forest clearings and forest edge, shrubby areas and gardens; in migration and winter also in scrub
Bird		IV	b	Canada warbler	Cardellina canadensis	Breeding habitat includes moist thickets of woodland undergrowth (especially aspen-poplar), bogs, tall shrubbery along streams or near swamps, and deciduous second growt
Bird		II	a	Cerulean warbler	Setophaga cerulea	A structurally mature hardwood forest in a mesic or wetter situation, with a closed canopy
Bird		IV	b	Chimney swift	Chaetura pelagica	Inhabits rural and urban environments having both an abundance of flying arthropods and suitable roosting/nesting sites
Bird		IV	a	Dunlin	Calidris alpina hudsonia	Winter resident shorelines and estuaries
Bird		IV	a	Eastern kingbird	Tyrannus tyrannus	Forest edge, open situations with scattered trees and shrubs, cultivated lands with bushes and fencerows, and parks; in winter more closely associated with forest clearings and borders
Bird		IV	а	Eastern meadowlark	Sturnella magna	Grasslands, savanna, open fields, pastures, cultivated lands, sometimes marshes
Bird		IV	a	Eastern towhee	Pipilo erythrophthalmus	Inhabits forest and swamp edges, regenerating clearcuts, open-canopied forests, particularly those with a well-developed understory, reclaimed strip mines, mid-late successional fields, riparian thickets, overgrown fencerows, shrub/small-tree thickets, and other brushy habitats
Bird		III	a	Eastern whip-poor-will	Caprimulgus vociferus	Forest and open woodland, from lowland moist and deciduous forest to montane forest and pine-oak association
Bird		IV	b	Eastern wood-pewee	Contopus virens	Inhabits a wide variety of wooded upland and lowland habitats including deciduous, coniferous, or mixed forests

Bird		IV	а	Field sparrow	Spizella pusilla	Old fields, brushy hillsides, overgrown pastures, thorn scrub, deciduous forest edge, sparse second growth, fencerows
Bird		IV	a	Grasshopper sparrow	Ammodramus savannarum	Grassland obligate
Bird		IV	a	Gray catbird	Dumetella carolinensis	Thickets, dense brushy and shrubby areas, undergrowth of forest edge, hedgerows, and gardens, dense second growth
Bird		IV	b	Green heron	Butorides virescens	Swamps, mangroves, marshes, and margins of ponds, rivers, lakes, and lagoons
Bird		III	a	Northern bobwhite quail	Colinus virginianus	Early successional habitats including croplands, grasslands, pastures, grassbrush rangelands, and open forests
Bird		IV	b	Northern Flicker	Colaptes auratus	Open forest, both deciduous and coniferous, open woodland, open situations with scattered trees and snags, riparian woodland, pine-oak association, parks
Bird		I	b	Northern saw-whet owl	Aegolius acadicus	Higher elevation coniferous woodlands in Blue Ridge and mountains west of Shenandoah River
Bird		III	а	Ruffed Grouse	Bonasa umbellus	Dense forest with some deciduous trees, in both wet and relatively dry situations from boreal forest (especially early seral stages dominated by aspen) and northern hardwood ecotone to eastern deciduous forest and oak-savanna woodland.
Bird		IV	b	Rusty blackbird	Euphagus carolinus	Wooded swamp and wooded wetland winter habitat
Bird		IV	b	Wood thrush	Hylocichla mustelina	Deciduous or mixed forests with a dense tree canopy and a fairly well- developed deciduous understory, especially where moist
Bird		III	a	Yellow-billed cuckoo	Coccyzus americanus	Open woodland (especially where undergrowth is thick), parks, deciduous riparian woodland
Bird		IV	a	Yellow-breasted chat	Icteria virens	Second growth, shrubby old pastures, thickets, bushy areas, scrub, woodland undergrowth, and fence rows, including low wet places near streams, pond edges, or swamps; thickets with few tall trees; early successional stages of forest regeneration; commonly in sites close to human habitation.
Crustacean	FSST	I	b	Madison Cave amphipod	Stygobromus stegerorum	Caves with clean abundant water flowing through the system
Fish		IV	a	Brook trout	Salvelinus fontinalis	Clear, cool, well-oxygenated creeks, small to medium rivers, and lakes
Fish	FS	II	a	Yellow lance	Elliptio lanceolata	Requires slow currents with unsilted sandy substrates and can tolerate a various water sizes
FW Mollusk		IV	С	Atlantic spike	Elliptio producta	Areas with moderate current and sand, rocky, or mud bottom
FW Mollusk		Ш	С	Blue Ridge springsnail	Fontigens orolibas	Springs and cave streams in the Potomac basin and along the Blue Ridge
FW Mollusk		IV	С	Carolina lance mussel	Elliptio angustata	Clean flowing water with sand and gravel substrates and aquatic vegetation
FW Mollusk		IV	a	Creeper	Strophitus undulatus	It is usually found in streams and rivers in a range of flow conditions (rarely in high-gradient streams of mountainous regions) but can tolerate lakes

						and ponds, particularly in outlets
FW Mollusk	ST	II	а	Green Floater	Lasmigona subviridis	Clean, calm water in streams and rivers of various sizes with sand and gravel substrates
FW Mollusk	FESE	I	а	James spinymussel	Pleurobema collina	Clear flowing water with sand, gravel, or cobble substrates
FW Mollusk		III	а	Notched rainbow	Villosa constricta	Clean streams with stable banks and sand or gravel substrates
FW Mollusk		IV	а	Triangle floater	Alasmidonta undulata	Clean streams with stable banks and sand or gravel substrates
Insect	FSST	I	С	Appalachian grizzled skipper	Pyrgus wyandot	Dry open areas with shale soils, clear cuts, utility rights of way, and other areas with dwarf cinquefoil
Insect	FSSE	I	С	Virginia Piedmont water boatman	Sigara depressa	Streams with clean water and healthy riparian areas site; this species has only been found at one site
Other Terrestrial Invertebrate	FS	II	С	Cave pseudoscorpion	Apochthonius coecus	Caves with clean abundant water flowing through the system
Other Terrestrial Invertebrate		III	С	Depressed glyph	Glyphyalinia virginica	No habitats have been identified for this terrestrial snail
Reptile		III	а	Smooth greensnake	Opheodrys vernalis	Moist meadows or grassy areas at the edges of bogs or small streams

^{**} Federal Endangered (FE), State Endangered (SE), Federal Threatened (FT), State Threatened (ST), Federal Species of Concern (FS), Federal Candidate (FC), Federal Proposed (FP), and Species of Collection Concern (CC).

Conserved Lands in Thomas Jefferson Planning Region

Recognizing the importance of the local habitats to resident and migratory wildlife, state, federal, and private entities have made significant investments to conserve lands within this planning region. Conservation mechanisms range from national parks and forests to state parks, forests, and wildlife management areas to conservation easements. Significant conservation assets, in terms of size, include:

- Shenandoah National Park,
- George Washington and Jefferson National Forest,
- Rapidan Wildlife Management Area,
- James River Wildlife Management Area,
- Hardware River Wildlife Management Area,
- James River State Park,

- Biscuit Run State Park,
- Lesesne State Forest,
- Crawfords Knob State Natural Area Preserve,
- Pigeon Top Mountain Preserve,
- Ragged Mountain Natural Area,
- Ivy Creek Natural Area, and
- Scheier Natural Area.

These properties contain a diversity of open water, forest, agricultural, and wetland habitats (Figure 4). They have been conserved to provide a range of conservation, recreational, and economic benefits such as habitat protection and restoration, ecotourism, and fishing and hunting opportunities.

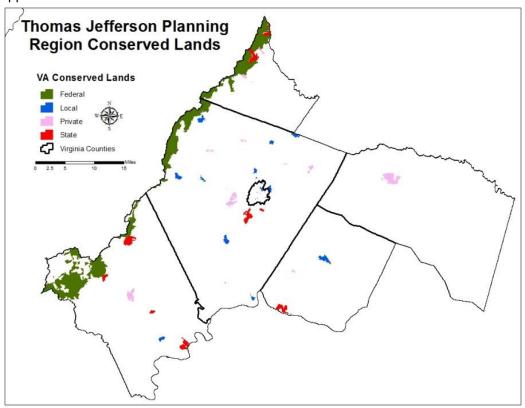


Figure 2. Conservation Lands in the Thomas Jefferson Planning Region (DCR, Natural Heritage 2014).

These properties serve as an important component of wildlife conservation efforts on within Crater Planning Region. Healthy and important habitats have been conserved within their boundaries; however, working to conserve other lands could be beneficial for many SGCN and habitats within the region. Additionally, although there may be concern over the economic and social impacts of putting lands into conservation, many of these areas provide recreation and ecotourism benefits (DCR 2013; Carver and Caudill 2013). Through these mechanisms local economies could be bolstered; however, insufficient data exist to fully describe the benefits and drawbacks of lands held in conservation within the planning region. To balance these interests, especially as conditions change, it will be critical for the conservation community to actively engage with local governments and stakeholders to ensure that conservation spending is beneficial for both wildlife and localities.

Climate Change Impacts in the Thomas Jefferson Planning Region

Changes in temperature and precipitation will likely negatively affect habitats and SGCN in the Thomas Jefferson Planning Region. Based on scientific reports and research, it is clear that temperatures in the state will get warmer. The National Climate Assessment (NCA) is a national climate assessment that provides state level information. The NCA indicates Virginia's average temperature could increase by as much as 7°F by 2100 (Melilo et al. 2014). Earlier models used for Virginia's 2008 Climate Action Plan project that average temperatures may increase by 3.1°C (5.6°F) by the end of the century in Virginia (Governor's Commission on Climate Change 2008).

Increased temperatures may lead to heat stress for species and affect water temperature, temperature regime timing, and associated behaviors as well as potentially resulting in changes to food availability (Boicourt and Johnson 2011; Kane 2013). Temperature increases may also be problematic for species at the edge of their ranges. For example, if species are at the more southern end of their range, they may not survive significant increases in temperature that are greater than they can withstand (Pyke et al. 2008). Warmer temperatures may also result in warmer waters, which could favor parasites and other pests in aquatic environments (Pyke et al. 2008; Najjar et al. 2010; Kane 2013). Additionally, if temperatures and precipitation change such that season length is altered, fish and other species reproductive cycles and other phenological processes may be affected. Ecological conditions may also be altered, including food supplies and sympatric animal behaviors (e.g., fish migrations and nest building).

Conservation Threats and Actions to Wildlife and Habitats in the Thomas Jefferson Planning Region

The following sections on threats, conservation actions, and conservation priorities are subdivided based on habitat type. Key habitat conservation strategies, actions, threats, and other impacts are summarized in Table 3. In many cases, actions taken to protect or enhance habitat will positively affect many Thomas Jefferson Planning Region priority SGCN and other species. Many of these activities are also expected to benefit landowners and communities.

Table 1. Summary of Conservation Strategies and Actions for the Thomas Jefferson Planning Region.

Conservation	Conservation Action	Threats Addressed	Economic/ Human	Priority
Strategy			Benefits	Areas
Protect karst habitats	1) Maintain vegetative cover within watersheds where subterranean species occur; 2) Establish vegetative buffers around springs and sinkholes; 3) Minimize nutrients and sediments flowing into the system; 4) Establish parks, greenways, or other conserved lands above karst systems; 5) Develop water conservation and use strategies to help minimize groundwater depletion; and 6) Better manage fecal matter and sewage.	Commercial/residential water consumption, sedimentation and pollutants; protection of cave entrances	Drinking water quality; sustainability of private landowner wells and residential water supply	Areas underlain by karst geology
Maintain and restore wetland habitats	1) Work with appropriate entities on wetlands permitting process to ensure adequate mitigation and restoration procedures are in place; 2) Establish or enhance vegetative buffer areas inland of existing wetlands; 3) Utilize relevant data (e.g., Virginia Department of Conservation and Recreation's wetlands catalog to identify priority areas for conservation, acquisition, and restoration; and 4) Control invasive species.	Water quality degradation, habitat/ land use conversion, non-native and exotic invasive species	Flood control; filtration services; erosion and sediment control; supports recreational and commercial fisheries; ecotourism/ wildlife watching and fishing/ hunting opportunities	Watershed with priority wetlands
Enhance,	1) Restore or establish vegetated	Water quality	Address TMDL concerns	Goldmine Creek,
maintain, and restore aquatic and riparian habitats	riparian buffers on streams flowing through agricultural lands; 2) Exclude livestock from streams; 3) Establish permanent vegetative cover on critical areas; 4) Reforest highly erodible pasture and croplands; 5) Utilize cover crops and no-till techniques on crop lands; 6) Restore and create wetlands; 7) Repair or replace failing septic systems and eliminating "straight pipes;"8) Restore and create urban forest buffers; 9) Enhance street sweeping efforts; 10)Work to reduce the amount of impervious surface; 11) Implement various urban storm water management techniques, such as urban forested buffers, wetland restoration, permeable pavement, and rain gardens to slow the flow of storm runoff into streams and allow infiltration into the soil; 12) Continue to identify impaired	degradation, land use changes, water withdrawals, climate change, invasive species	by reducing amounts of sediment, nutrients, pesticides, and other pollutants that enter water ways; sustain sport fisheries and recreation opportunities; contribute to clean water supply	Meadow Creek, Moores Creek, Moores Creek, Rockfish River and Tye River

	waters within the planning region; 13) Remove barriers to aquatic connections; 14) Monitor and address invasive species impacts; and 15) Adopt land use practices or policies through zoning or other means to help improve the health of aquatic systems.			
Maintain and restore forest habitat	1) Protect land through acquisition, easement, incentives, or other mechanisms; 2) Implement vegetative buffers around extractive practices and development; 3) Work with state and federal agencies to ensure implementation of appropriate best management practices; 4) Maintain forest health to help ensure forest viability; 5) Monitor and control invasive species; and 6) Facilitate deer control efforts.	Land use change and conversion, invasive species, climate change	Flood control; water quality; ecotourism/ wildlife viewing/other outdoor recreation	Forest patches adjacent to already protected parcels
Maintain and restore open habitats	1) Restore native grasses, shrubs, and forbs; 2) Maintain existing open habitats with periodic disturbance (e.g., prescribed burning, mowing, disking, etc.); and 3) Conserve, via acquisition, easement, collaboration, or agreement, patches from 20 acres to 100 or more acres.	Land use changes, invasive species	Conservation of native pollinators; erosion control; sequestration of nutrients, pesticides, and other pollutants before they enter rivers or karst systems	Areas supporting SGCN that are not already protected

Protect Karst Habitats

The Thomas Jefferson Planning Region contains cave/ karst habitats that are relatively unique in Virginia (Figure 5). These features are created by complex interactions of water, bedrock, vegetation, and soils. Karst areas contain sinkholes, sinking and losing streams, caves, and large flow springs (DCR website 2014). Karst systems provide important habitats for one priority SGCN within this planning region, the Blue Ridge springsnail.

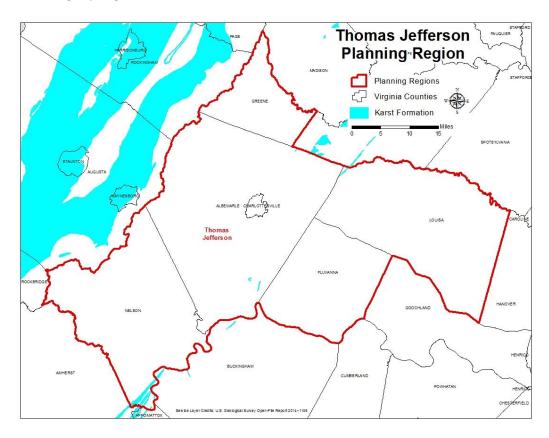


Figure 5. Karst Formations in Thomas Jefferson Planning Region (Weary and Doctor 2014).

Threats

Threats are primarily water-related for karst systems.

Water Quality Degradation: Water is the most critical element influencing the health of a karst system. The quality of water entering, and flowing through, Virginia's karst systems, is affected by a variety of issues. Nutrient pollution, especially from nitrogen and phosphorus, is a significant cause of water degradation as well as bacteria, fertilizer, and pesticides (DCR 2008). Nutrients often enter aquatic systems from lands without adequate best management practices (BMP), storm water runoff controls, or adequate waste treatment practices. Water quality degradation of karst systems often occurs when sinkholes are used as disposal sites.

Development and resulting pollutant-laden runoff also negatively affect water quality (DCR 2008).

- 2. <u>Altered Hydrology</u>: The amount of water flowing through the system is also important. Withdrawals for human use have the potential to degrade subterranean habitats and change surface topography. Development and other activities which increase the amount of impervious surface can also play a role in changing water flow patterns and altering how much water flows into a karst system.
- Climate Change: Changes to precipitation regimes that may cause more intense storm events
 could exacerbate already existing water quality problems. Higher amounts of precipitation in a
 short time frame could dramatically affect storm water runoff and nutrient run off from
 impervious surfaces.

Conservation Management Actions

The most efficient and cost effective means of conserving the integrity of karst and cave habitats is to focus on preserving the quality and quantity of water flowing into these systems. To improve water quality, important management actions include: minimizing use of fertilizers and pesticides near karst sites, minimizing runoff and other pollutants around the areas, preventing disposal of residential or agricultural waste near these sites, and ensuring vegetative buffer areas where there are extractive or other intensive land uses (Veni et al. 2001). It is also important to prevent sewage from community or municipal sewer systems from contaminating ecologically sensitive groundwater systems in karst areas (B. Beaty, The Nature Conservancy, personal communication, 2015). Vegetative buffers around sinkholes and entrances work to maintain the quality of water flowing into karst systems and provide vegetative cover in areas underlain by karst geology. However, it is important to note that it can be difficult to identify surface areas above the subterranean system well enough to install appropriate buffer areas.

Additionally, working with residents and municipalities to develop water conservation strategies will be important to control water withdrawals in the area (Veni et al. 2001). Adopting land use practices or policies through zoning or other guidelines focused on karst systems may also help protect and improve the health of karst systems in sensitive areas. Establishing conserved or recreational areas around these karst systems may also be valuable. Local government policies or ordinances could include overlay districts, karst feature buffers, geotechnical surveys when in area that could contain karst systems, and/or performance standards for development (Belo 2003).

Climate-Smart Management Actions

Karst systems are vulnerable to stressors such as poor water quality and changes to water flow that may be exacerbated by climate change. When considering planting vegetative buffers, managers will need to understand how conditions may change in the area and work with appropriate vegetation. For example, if stream flow is expected to become flashier due to increased precipitation, or more frequent flooding is projected to occur, tree and shrub species that can tolerate flood conditions and inundation should be included in the selected plant species. Vegetation species that are better able to withstand these conditions may be better suited to help mitigate the impacts of flooding and increased runoff.

Minimizing impervious surface (see following section) will be even more important under climate change as with increased storm intensity will result in more stormwater runoff.

Maintain and Restore Wetland Habitats

Non-tidal wetlands are found throughout the Thomas Jefferson Planning Region and make up approximately 1.7 percent of the region (24,000 acres) (Anderson et al. 2013). In addition to providing habitat for a diversity of aquatic and terrestrial species, wetlands help maintain water quality and quantity within a watershed, limit erosion caused by floods, and provide recreational opportunities for hunters, anglers, and wildlife watchers. These wetlands provide valuable habitats for the rusty blackbird and smooth greensnake, among others.

Threats

The health and quality of non-tidal wetlands are affected by a variety of issues, both natural and anthropogenic. As the quality of a wetland degrades, so does the value of that wetland to Virginia's wildlife.

- 1. Water Quality: Wetlands help filter nutrients and other pollutants from watersheds, but they are also sensitive to activities that impair water quality and overload the system (Hemond and Benoit 1986). When best management practices are not implemented upstream, runoff laden with nutrients, sediment, and other pollutants enter the system in concentrations that hinder the wetland's filtering capacity. Storm water runoff from urban and developed areas also contributes to water quality issues that degrade wetlands (Hemond and Benoit 1986). Nutrient pollution and sedimentation are important issues for tidal and non-tidal wetlands throughout the planning region.
- 2. <u>Land Use Changes</u>: One of the most significant threats to these non-tidal wetlands is conversion to other uses that results in a loss of wetland integrity and function. As more areas are developed for additional human uses, wetland areas will likely be lost.
- 3. <u>Invasive Species</u>: Invasive species often degrade quality of wetland habitat through damage or loss to wetland vegetation. Examples of invasive species affecting these non-tidal wetlands include purple loosestrife and exotic invertebrates.
- 4. <u>Climate Change</u>: As precipitation regimes change and temperatures likely increase, water availability may change. For example, in summer months droughts may become more frequent and water availability may decrease.

Conservation Management Actions

A number of actions can be taken to address threats affecting wetlands in the Thomas Jefferson Planning Region. To address development and fill impacts, the federal government and the Commonwealth of Virginia has established an extensive wetlands permitting process to help landowners and developers avoid impacts to wetlands while pursuing their management objectives. The U.S. Army Corps of Engineers has authority to issue permits for impacts to non-tidal wetlands through the federal

Clean Water Act, while DEQ has authority under Virginia's State Water Control Law. Permits are issued through a Joint Permit Application Process that can be initiated with DEQ (DEQ 2011). Mitigation to compensate for wetland loss is often required under these permits. However, wetlands restoration to reestablish or rebuild former wetland areas or restore functions to a degraded wetland also are voluntary conservation actions agencies and conservation partners can implement outside of required wetlands mitigation and are an important component to protecting wetlands (DEQ 2011). These types of conservation actions also help provide migration corridors for migratory birds that depend on wetlands for nesting, roosting, and foraging. Various programs implemented by the Natural Resources Conservation Service (NRCS) and other partners also provide guidance related to conserving wetlands, establishing oyster reefs, and implementing other actions.

Establishing or protecting vegetative buffers upland of wetlands is important to protect health of the existing wetlands as well as to provide a potential migration route as conditions change (Kane 2011). Protection of additional wetland areas through acquisition, easement, or agreement would allow for further conservation of this important habitat and associated SGCN. Finally, working to limit invasive plants and animals and predators that might degrade the quality of these habitats will be important conservation actions.

Priority areas for wetlands protection and restoration within the Thomas Jefferson Planning Region include those wetlands that allow for large wetland complexes to be protected, ensuring larger habitat patches remain available for wildlife. Areas identified by conservation partners, such as the Virginia Department of Conservation and Recreation (DCR), as outstanding opportunities for conservation should also be considered priorities for protection and conservation. An initial review of the Virginia Wetlands Catalog identifies priority wetlands for conservation and restoration (Weber and Bulluck 2014). Designation of these areas was based on several factors, including existing plant and animal diversity, presence of significant natural communities, presence of natural lands providing ecosystem services, presence of corridors and stream buffers, proximity to conserved lands, inclusion within or downstream of healthy watersheds, and location of drinking water sources (Figure 6) (Weber and Bulluck 2014). DCR also designates potential restoration sites, identified based on similar factors as conservation areas, but also including consideration of inclusion within degraded watersheds, proximity to impaired waters, location of existing wetland mitigation banks, presence of prior converted and farmed wetlands, and inclusion of stream reaches with lower aquatic biodiversity (Figure 7) (Weber and Bulluck 2014). Wetland conservation priorities exist adjacent to already conserved lands in Fluvana and a significant amount of very high priority areas are in Albemarle County. The sites with the highest potential for restoration occur in Greene and Albemarle counties.

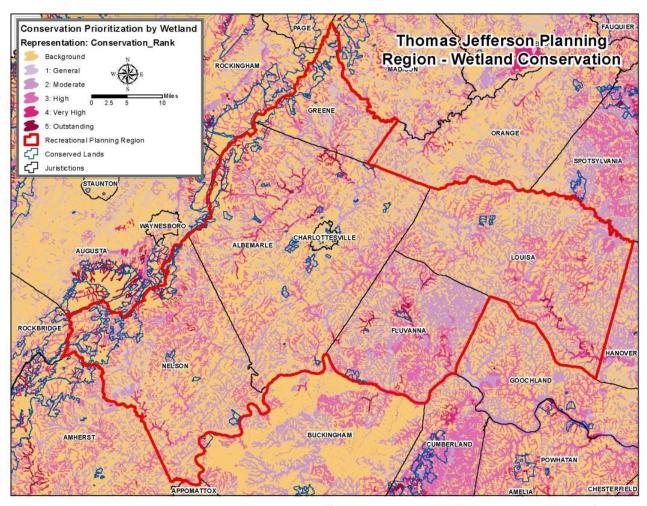


Figure 6. Wetland Conservation Priority Areas in Thomas Jefferson Planning Region (Weber and Bulluck 2014).

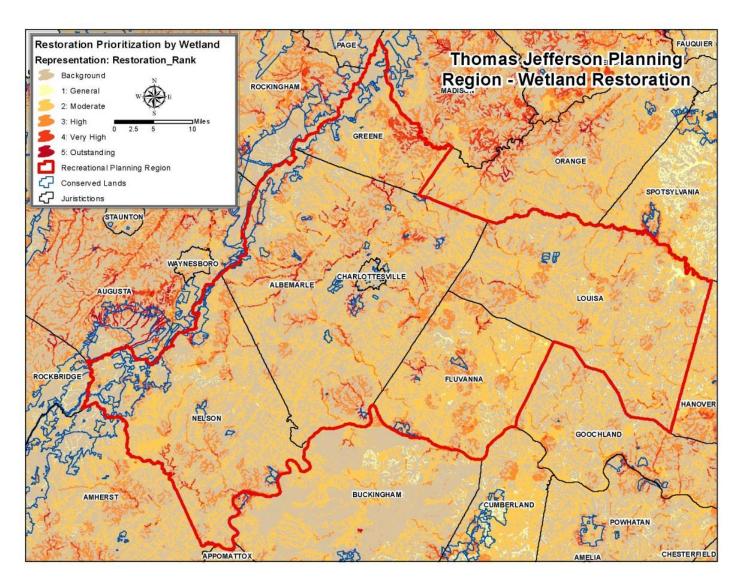


Figure 7. Wetland Restoration Priority areas in Thomas Jefferson Planning Region (Weber and Bulluck 2014).

Climate-Smart Management Actions

Additional wetlands climate-related conservation actions include: restoring and enhancing vegetation within the wetlands to support changing conditions (e.g., using vegetation species that can withstand a broader array of conditions such as more frequent inundation) and enhancement of wetlands by targeted restoration or acquisition in areas where impacts from climate change may be mitigated.

Enhance, Maintain, and Restore Aquatic and Riparian Habitats

Aquatic systems in the Thomas Jefferson Planning Region include warm and cold water, freshwater rivers, streams, and creeks. Large river systems include the James and Rivanna Rivers as well as smaller creeks and streams. Approximately 20,300 acres (1.5 percent) of the planning region is considered aquatic (Anderson et al. 2013). These systems provide important habitat for numerous species of wildlife, fish, and invertebrates. Priority SGCN that depend on these habitats include the Virginia Piedmont water boatman (100 percent of its range within this planning region), James spinymussel, notched rainbow, Atlantic spike, and green floater.

Threats

Aquatic and riparian habitats within the Thomas Jefferson Planning Region face multiple threats from water quality related issues to invasive species.

- 1. Water Quality Degradation: Pollution is the most significant threat to aquatic species and riparian habitats within the Thomas Jefferson Planning Region. Polluting materials include fertilizers, eroded sediment, and human and animal waste flowing into the region's creeks and rivers from storm water runoff, failing septic systems, and agricultural practices that do not conform to standard best management practices (DEQ 2014a). In many cases, watersheds have insufficient riparian buffers and vegetative areas to stop these materials from flowing into the creek or stream (ACJV 2005). Once present in aquatic systems, these materials may concentrate in sediment and bottom-dwelling organisms where they can result in reduced levels of dissolved oxygen and altered pH levels (Chesapeake Bay Foundation 2014). In addition to the impacts on aquatic life, many of these substances pose a risk to human health and local economies (Chesapeake Bay Foundation 2014).
- 2. <u>Impervious Surface</u>: Impervious surfaces (i.e., land covers that do not permit water to permeate the ground) give a useful measure of the environmental condition of an area. In a developed watershed there is often significant impervious surface cover; thus, a greater amount of surface water, often laden with pollutants, arrives into a stream at a faster rate than in less developed watersheds, increasing the likelihood of more frequent and severe flooding. Substantial amounts of impervious surface area can also lead to degradation of water quality, changes in hydrology, habitat structure, and aquatic biodiversity. Additionally, impervious surfaces often run along areas that directly interact with the stream or river through flooding, geomorphology, or material inputs. Although most of the Thomas Jefferson Planning Region generally has a low percentage of impervious surface cover, some areas such as around cities have a larger percent of impervious surface cover (Figure 8).

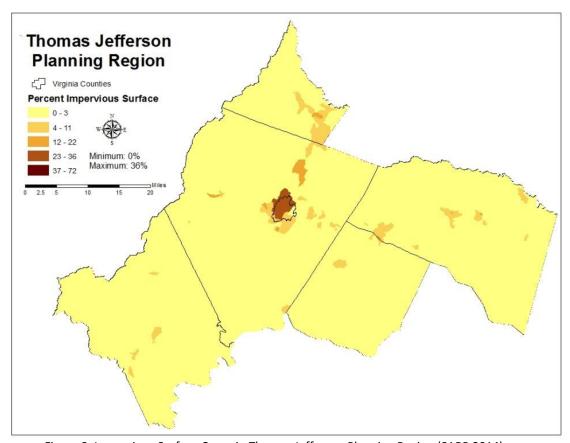


Figure 8. Impervious Surface Cover in Thomas Jefferson Planning Region (SARP 2014).

- 3. <u>Invasive Species</u>: Additional threats to aquatic systems within Thomas Jefferson Planning Region include invasive species that consume native species or consume aquatic vegetation, thereby altering the quality of these aquatic habitats.
- 4. <u>Habitat Conversion and Alteration</u>: Rivers are fragmented by dams, culverts, and other impediments that limit the connectivity of these aquatic habitats. This fragmentation can prevent aquatic species from accessing important aquatic habitats crucial to various life stages. Channelization, shoreline alteration, and extractive land use practices can alter aquatic habitats in terms of changes to hydrology, chemistry, and water temperature. These practices may also directly alter habitats through loss of vegetative riparian cover, filling of streams, or hardening of stream banks.
- 5. <u>Water Withdrawals</u>: Water withdrawals for human and land uses can also alter stream hydrology and cause stress to aquatic species that depend on specific water levels and flow rates.
- 6. <u>Climate change</u>: Climate change will also affect aquatic systems in this planning region. Changes in temperature and precipitation regimes could result in drier more drought prone summers. Water temperatures may also be affected, resulting in potential harm to fish and other aquatic species.

Conservation Management Actions

Water Quality Improvement Plans have been developed by the Virginia Department of Environmental Quality (DEQ) and various partners. Watersheds within the planning region that have Water Quality Improvement Plans include: Goldmine Creek (Blue Ridge Environmental Solutions, 2011), Meadow Creek, Moores Creek (Virginia Tech 2012), Moores Creek (Rivanna River Basin Commission 2012), Rockfish River (DEQ and DCR 2013), and Tye River (DEQ 2014b) (Figure 9).

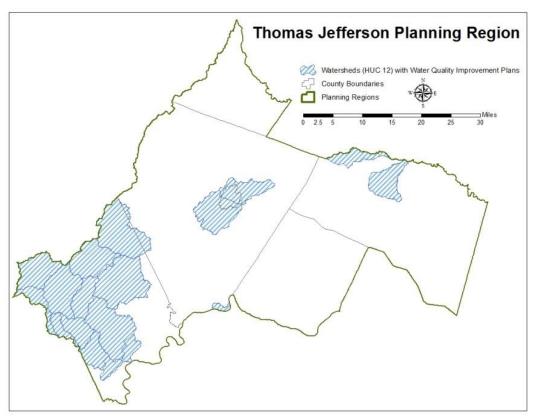


Figure 9. Watersheds with Water Quality Improvement Plans.

Each of these watersheds is designated as being impaired, and the primary actions needed to improve water quality within these watersheds include:

- Restoring or establishing vegetated riparian buffers on streams flowing through agricultural lands;
- Excluding livestock from streams;
- Establishing permanent vegetative cover on critical areas;
- Reforesting highly erodible pasture and croplands;
- Utilizing cover crops and no-till techniques on crop lands;
- Restoring and creating wetlands;
- Repairing or replacing failing septic systems and eliminating "straight pipes" depositing human waste into streams;
- Restoring and creating urban forest buffers;
- Enhancing street sweeping efforts;

- Working to reduce the amount of impervious surface within the watershed; and
- Implementing various storm water management techniques, such as urban forested buffers, wetland restoration, permeable pavement, and rain gardens to slow the flow of storm runoff into streams and allow infiltration into the soil.

Members of Virginia's conservation community may consider working in other watersheds of local significance that may not have a Water Quality Improvement Plan. The Virginia Watershed Integrity Model identifies high value watersheds within the planning region for conservation based on their proximity to headwater streams, drinking water source protection, and biological integrity indices (Ciminelli and Scrivani 2007). These areas provide a starting point for identifying additional areas to focus conservation efforts (Figure 10).

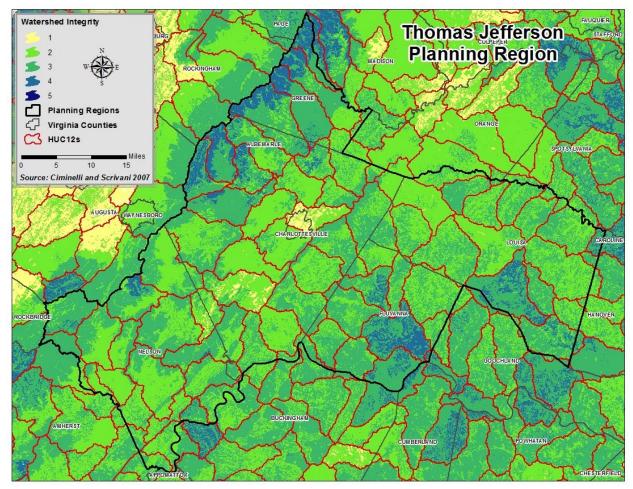


Figure 10. Watershed Integrity Model for Thomas Jefferson Planning Region (Ciminelli and Scrivani 2007). Several conservation actions common to most water quality and instream habitat enhancement plans can be implemented with little chance of ill consequence to wildlife or human communities downstream in these areas. Some of the most beneficial actions would include:

- Working with landowners to exclude livestock from streams;
- Reducing impervious surface by replacing with more porous materials or vegetation;

- Restoring or enhancing vegetated riparian buffers; and
- Working to enhance the health of upland forests and grassland habitats.

Additionally, many agencies help landowners in the Thomas Jefferson Planning Region establish vegetative buffers along waterways flowing through their properties. The Virginia Department of Forestry (DOF), Virginia Department of Agriculture and Consumer Services (VDACS), and DCR have established BMPs for various land uses, which if implemented serve to minimize land use impacts upon adjacent and downstream waters. In addition, landowners are encouraged to work with DOF through the Forest Stewardship Program to utilize timber production BMPs, such as implementation of buffers and careful planning of roads and stream crossings, and agricultural producers are encouraged to work with VDACS and the local Soil and Water Conservation Districts to control erosion and limit runoff through the various available programs (DOF 2014; DCR 2014). NRCS provides landowners with other opportunities including the Environmental Quality Incentives Program.

Stream restoration and connectivity projects (e.g., removing dams and culverts or modifying them to allow for passage) help improve and provide additional aquatic habitats for fish species within the state; however, there are many dams, and not all can or should be removed. Priority watersheds that would benefit from enhanced connectivity have been identified by the Chesapeake Bay Fish Prioritization Tool and the Southeast Aquatic Connectivity Assessment Tool (Figure 11) (Martin and Apse 2013).

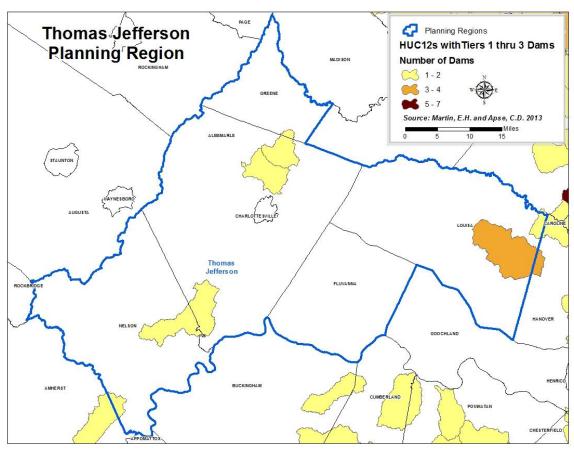


Figure 11. HUC12 Watersheds with Priority Dams for Removal/ Modification for Enhanced Connectivity (Martin and Apse 2013).

Additional actions to improve aquatic systems in the Thomas Jefferson Planning Region include monitoring and addressing invasive species impacts and working with the planning region to adopt use practices or policies through zoning or other guidelines (e.g., impervious surface limits) to help improve the health of aquatic systems within and downstream of regions that have significant impervious surface areas. Additionally, land acquisitions or easements that will help protect the land surrounding creeks should also be considered.

Climate-Smart Management Actions

When planting, restoring, or maintaining riparian buffers, managers should consider how conditions may change in the area and work with appropriate vegetation. For example, if stream flow is expected to become erratic due to increased precipitation or more frequent flooding as is projected to occur, native tree and shrub species that can tolerate flood conditions and inundation should be included in the selected plant species. Utilizing native species that may provide better erosion control (broader, deeper roots) than other species should be encouraged. Techniques and tools may be needed (e.g., fencing, biomats, etc.) to ensure success. Additionally, as stream temperatures will likely increase and hydrologic regimes may shift, it will be important to focus on maintaining and/ or improving stream connectivity to ensure aquatic organism can move to preferred habitats as these conditions change. Minimizing impervious surface will be even more important under climate change as increased storm intensity will likely result in increased levels of stormwater runoff. Improving stormwater control methods, to ensure they account for predicted changes in precipitation and flow, could help minimize the future impacts of storm water under climate change (Kane 2013).

Conserve and Manage Forest Habitats

Mixed hardwood and conifer forests make up almost two thirds of the Thomas Jefferson Planning Region and are important for a broad range of species (Table 4). Young forest habitat can be loosely defined as referring to areas dominated by woody seedlings and saplings (Oehler et al. 2006). Previously, young forests were often referred to as an early successional habitat for eastern portions of North America. The young forest component (age class) in most of the forests within the planning region is lacking, which will impact the tree species present within these forests in the future. Lack of young forest habitat has detrimental effects on the wildlife species that depend on this forest stage for survival. Spruce-fir forests make up a small percentage of the forest types within this planning region, while the majority of the forested lands are made up of mixed hardwoods (oak and hickory) and conifers. These forests help protect water resources within the region and provide habitat for species such as the Northern saw-whet owl, cerulean warbler, ruffed grouse, and barn owl, among other species.

Table 4. Forest Acreage Totals in Thomas Jefferson Planning Region (Anderson et al. 2013).

Forest Type	Acreage	Percent Planning Region
Spruce Fir	14.68	0.0%
Mixed Hardwood and Conifer	857,352.37	61.75%

Threats

Forests within this planning region face a range of threats.

- Land Use Changes and Conversion: The largest threat to spruce fir and mixed hardwood and conifer forests within the Thomas Jefferson Planning Region is fragmentation, mainly due to expanding residential and commercial development and resulting roads. In many cases, the losses can be complete and have profound impacts on local wildlife species composition, water quality, and outdoor recreational opportunities. If established BMPs are followed, impacts to waterways and adjoining properties can be prevented or mitigated such as through implementation of vegetative buffer areas (see below). Energy development (wind energy and the potential for natural gas) could also degrade habitat and affect species composition and water quality.
- 2. <u>Lack of Young Forest Conditions</u>: During recent decades, managers of federal and state-owned forests have managed properties for mature forest conditions. While mature forests provide habitat for a variety of species, the lack of young forest conditions in the western parts of Virginia has curtailed distribution of many species that rely upon open habitats. Forests with balanced age classes are critical for the health of the forest and the survival of forest dependent wildlife species.
- 3. <u>Invasive Species</u>: Invasive plant species and pests are also a significant problem in this region. Of particular note are the hemlock wooly adelgid and the gypsy moth, which has a significant effect on the ecology of oak-hickory forests (DOF 2014).
- 4. Overabundance of Deer: Virginia's Draft 2015-2024 Deer Management Plan indicates the deer population in Albemarle County needs to be reduced in order to meet a variety of social and ecological goals (DGIF 2015a). An overabundance of deer often hinders forest regeneration, impacts populations of sensitive native plants, and eliminates habitats for ground-nesting birds and other understory species. In many cases, deer overbrowse can facilitate colonization by invasive species such as privet or Japanese stilt grass. These invasive species are not palatable to deer, easily colonize these disturbed habitats, and provide few habitat benefits to native wildlife. Urban and suburban environments compound the issue as they often limit hunting opportunities that might otherwise help control deer numbers.
- 5. <u>Climate Change</u>: More intense storm events, higher temperatures, and the potential for droughts may exacerbate existing stressors as well as damage intact forests and result in more forest fires and an increase in incidence of pests.

Conservation Management Actions

Actions for conserving mixed hardwood and conifer forests (the majority of spruce fir forests are already under some form of conservation) in the Thomas Jefferson Planning Region may include working to conserve, either through acquisition, easement, cooperative management, or incentives, intact forest patches capable of supporting a variety of Action Plan species. Land protection will help reduce conversion of forests to development. Additionally, working with landowners to ensure BMPs such as

vegetative buffers are in place around agricultural operations or timber harvest areas will help prevent erosion and run off of sediments and nutrients into adjacent streams. Research demonstrates that vegetative riparian buffers can filter significant amounts of nutrient run off from timber operations and agricultural fields (DOF 2014). Some BMPs recommend a 50 foot buffer and allow some timber harvest within the buffers, while other BMPs encourage a 100 foot buffer with no harvest (DOF 2014; A. Ewing, Virginia Department of Game and Inland Fisheries, personal communication, 2015). BMPs also recommend building roads on areas with minimum slope and minimizing or avoiding stream crossings (DOF 2014). The *Upper York River Basin Watershed Implementation Plan* developed by DCR and stakeholders specifically highlights reforesting areas around eroding crop lands and pastures within Goldmine Creek watershed to help decrease sediment run off as well as provide wildlife habitat, and *Water Quality Improvement Plan for Tye River, Hat Creek, Rucker Run, and Piney River – A Plan to Reduce Bacteria in the Water* makes the same recommendations for Tye River watershed (Blue Ridge Environmental Solutions 2011; DEQ 2014).

Several agencies, including DGIF, NRCS, DOF, USFWS and the U.S. Forest Service (USFS) advocate that efforts be expanded to create young forest habitats on public lands. Managing forests via silvicultural practices and/or through the use of fire are the most economical options to create these desired conditions.

Working to maintain forest health (balance age classes and diversity of tree species) is also integral to ensuring forest habitat is available to be conserved and protected. DOF makes several key recommendations that relate to habitat health, including but not limited to using species within their native ranges, if feasible using a mix of tree species to help minimize susceptibility to pests, preventing unnecessary site disturbance, and protecting unusual (rare) forest habitats (DOF 2014). In terms of invasive species and pests, monitoring and control will be important to prevent its spread. Some of these forest habitats should be managed with thinning and prescribed burns to minimize outbreaks while also improving quality of wildlife habitats (Brooks and Lusk 2008; DOF 2014).

In terms of addressing deer and their impacts to forested habitats, hunting is the most expedient and efficient means of controlling their populations. DGIF staff and partners feel there are sufficient numbers of hunters to affect a reduced population within this planning region. However, the efficiency of hunting is often limited by a lack of access to areas in need of herd reduction. DGIF currently works with various public and private landowners, property managers, and public officials to facilitate hunting opportunities within the planning region. These efforts will continue. The control of deer numbers is also hindered by a lack of a practical and efficient means to assess deer impacts to local habitats across the state, making it difficult to prioritize areas in need of population control. This issue is discussed several times within Virginia's current Deer Management Plan and will be similarly addressed in the revised 2015-2024 Deer Management Plan (DGIF 2015a). DGIF has initiated research to better understand deer impacts to local ecosystems.

Climate-Smart Management Actions

To best manage forests in the Thomas Jefferson Planning Region as the climate changes, it will be imperative to understand how climate may affect potential future composition of forests in Virginia and how that may affect SCGN. Conservation and management efforts may need to focus on trees that can better withstand increased temperatures and drought, among other impacts. Managers may wish to consult the USFS's tree atlas when planning management and conservation of these forests.

Additionally, harvest guidelines may need to be revised, depending on projections for future tree composition. Invasive species monitoring and prevention will also become even more important to include in forest management as climate change may favor some tree pests, diseases, and invasive species.

In terms of considering how to best manage for birds, mammals, and other species that depend on these forests, managers will want to try to provide refugia for SGCN as habitat is lost as well as establishing corridors both north/ south and east/west between protected areas to assist with species movements as conditions change (King and Finch 2013). Some SGCN will not be able to migrate without contiguous forests, so some species may still be lost, but implementing conservation management actions and developing corridors can help provide can them the best chance at continued existence. It will also be important to work to maintain species diversity and continue to reduce existing stressors that will likely exacerbate impacts from climate change (McKelvey et al. 2013).

Maintain and Restore Open Habitats

Open habitats represent an assortment of habitat types that are botanically characterized by grasses, forbs, and shrubs. Trees may be present, but they tend to be widely spaced and crowns do not form a canopy. DGIF biologists and partners have indicated several varieties of open habitats are important for Action Plan species. Open habitats are often comprised of post-agricultural lands and glades and barrens and make up approximately 50,300 acres (3.6 percent) of the planning region (Anderson et al. 2013). These habitats are becoming rare in Virginia as agriculture and timber harvest practices change; however, they are important to a range of species that depend on these areas for nesting, feeding, protection, etc. These areas provide habitat for the barn owl, northern bobwhite quail, and the Appalachian grizzled skipper, among other species.

Threats

Changing land use patterns has played a large role in the loss of open habitats as has alteration to natural disturbance regimes.

- 1. <u>Land Use Changes</u>: Dozens of open habitat species have been affected by changing land use and agricultural practices that resulted in either degraded or destroyed open habitats. The most serious threats to remaining open habitats within the planning involve either development (where habitats are converted for human use) or natural succession (where trees are allowed to dominate and the site eventually becomes forest).
- 2. <u>Invasive Species</u>: Invasive species are also problematic, especially tree of heaven, Japanese stilt grass, garlic mustard, and privet. These species can out-compete native open habitat species and take over the landscape. Some species such as tree of heaven can change the landscape from an open habitat to a more closed habitat relatively quickly due to its ability to spread and colonize areas rapidly (VISWG 2012). Japanese stilt grass also grows quickly and in mats that can crowd out native grasses. It also alters soil pH inhibiting growth of other native plants (VISWG 2012).

Conservation Management Actions

DGIF has recognized that the loss of open habitats, such as glades, savannas, and post-agricultural areas have caused significant declines in several Action Plan species, including the northern bobwhite, loggerhead shrike, field sparrows, eastern towhees, brown thrashers, prairie warblers, regal fritillary, and monarch butterflies. It is likely that the loss of these habitats has contributed to the declines in native pollinator species like bumblebees as well (Xerces Society 2011). To address this issue, Virginia has become a leader in the Northern Bobwhite Conservation Initiative (NBCI). DGIF contributes to this national effort by leading the Virginia Quail Recovery Initiative (QRI), which is a robust, state-based, multi-partner effort dedicated to conserving and restoring open habitats within Virginia. Both the NBCI and the QRI have determined that Green County offers some of the best opportunities for restoring open habitats that support a diversity of open habitat species (DGIF 2007).

Agriculture and forestry are large industries in Virginia, and landowners are important conservation partners. The QRI was created to find opportunities that help private landowners meet their economic goals while also contributing to the conservation and recovery of important wildlife and pollinator species. QRI efforts within this planning region focus on helping landowners manage retired agricultural lands and forested areas to benefit open habitat species, and DGIF provides information for landowners on its quail website (DGIF 2015b).

For landowners seeking to improve the habitat quality of pastures and field edges, the QRI generally recommends removing nonnative grasses and invasive species. In many instances, a sufficient seedbank of native species will exist in the soil to allow the restoration of native plant communities and replanting will likely not be required. Once a native plant community has been established, the QRI recommends managing these habitats either through burning, disking, or (least favorable) mowing. Additionally, within *Managing Pines for Profit and Wildlife* biologists describe landowner opportunities to create a commercially viable forest plot that also benefits open habitat species such as quail (Puckett et al. 2008). Recommendations are provided for site preparation, planting density, pre-commercial thinning, hardwood and grass suppression, commercial thinning, and post-thinning management.

A few patches of glade habitats occur within this planning region. The majority occur on private lands. The key to their conservation will involve working with willing private landowners to conserve and restore those habitats through acquisition, easement, or agreement.

Climate-Smart Management Actions

Changes in temperature and precipitation regimes could negatively affect open lands as temperatures increase and summers become drier and more drought prone. However, research demonstrates that many species that make up open habitats are already relatively drought tolerant, meaning that open lands may not be as affected by climate change as other habitats if they can maintain their diverse make up of vegetation species (Craine et al. 2012). It is important to note that if there is extended severe drought, open lands may succumb over time (Craine et al. 2012). To maintain diversity and help build resiliency in open lands within this planning region, it will be important to implement the management options above, especially focusing on removing non-natives and ensuring a diverse mix of vegetation species. Additionally, working to protect and preserve larger tracts of grasslands will help provide refugia for the species that depend on this habitat.

EFFECTIVENESS MEASURES EXAMPLES

As discussed within the Action Plan's Introduction (see Measuring the Effectiveness of Conservation Actions), it is increasingly important for the conservation community to demonstrate the effectiveness of conservation actions. Elected officials, budget authorities, private donors, and members of the public want to know that their investments in wildlife conservation are having the desired effects. During 2011, the Association of Fish and Wildlife Agencies developed and tested a series of effectiveness measures meant to support the Wildlife Action Plan implementation and the State Wildlife Grants program (AFWA 2011).

Virginia's 2015 Wildlife Action Plan describes a diversity of conservation actions that should help keep species from becoming endangered. The majority of these involve habitat protection, habitat restoration, controlling invasive species, or implementing efforts to keep pollutants from flowing into Virginia's waterways. Important data that can demonstrate the effectiveness of these conservation actions can include the following:

Conservation Action	Indicators of Effectiveness
Creation of Vegetative/ Forest	 Before/ after photos of project site;
Buffers along Streams or Wetlands	 Photos documenting changes as vegetation matures over multiple years;
	 Before/ after measurements of sedimentation immediately downstream of site; and Changes in the number and diversity of species utilizing
	the site.
Control of Invasive Plants	 Before/ after photos of project site; Photos documenting changes as restored vegetation matures over multiple years; and Before/ after comparison of the number and diversity of species utilizing the site.
Remove Cattle from Streams	 Before/ after photos of project site; Photos of alternative watering systems (if appropriate) Photos documenting changes in shoreline as restored vegetation matures over multiple years; Before/ after comparison of sediment and water chemistry immediately downstream of site; and Before/ after comparison of the number and diversity of species utilizing the site.
Creating or Improving Open Habitats	 Before/after photos of project site; Photos documenting changes to the site as the vegetation matures; and Before/ after comparison of the number and diversity of species utilizing the site.

CONCLUSION

The development of the Virginia Wildlife Action Plan presented a unique opportunity for the Commonwealth—an opportunity not only to assess the condition and status of the state's wildlife and habitat resources, but to provide a shared vision and purpose in the management and conservation of this "common wealth." The true value of this initiative is this recognition of common interests and the enhancement of existing and fostering of new partnerships to address issues of mutual concern. The Action Plan's long-term success will depend on the implementation of the recommended actions by partners across the state and the effectiveness with which conservation partners collectively manage these natural resources.

This Local Action Plan Summary aims to prioritize species, habitats, and conservation actions within this planning region, so that partners working within this region can use limited resources to greatest effect. However, Virginia faces serious issues. Not addressing these problems would risk more species becoming threatened or endangered, the quality of our land and water would decline, and Virginians could lose important pieces of our natural heritage that contribute to our quality of life. However, there are significant conservation opportunities to benefit wildlife and people in the planning region. Our problems are not insurmountable, and most can be addressed with proven conservation management techniques.

Working to maintain and protect existing high quality habitat will be a priority before restoration; however, restoration is still an important action and necessary in many cases. Within the Thomas Jefferson Planning Region, priority conservation opportunities include:

- Protecting karst habitats.
- Protecting the quantity and quality of water.
- Maintaining existing vegetated wetlands and restoring vegetated wetland habitats where possible.
- Enhance and protect open habitats.

REFERENCES

Anderson, M.G. M. Clark, C.E. Ferree, A. Jospe, A. Olivero Sheldon and K.J. Weaver. 2013. Northeast Habitat Guides: A companion to the terrestrial and aquatic habitat maps. The Nature Conservancy, Eastern Conservation Science, Eastern Regional Office. Boston, MA. Available at http://easterndivision.s3.amazonaws.com/NortheastHabitatGuides.pdf.

Association of Fish and Wildlife Agencies (AFWA). 2011. Measuring the Effectiveness of State Wildlife Grants: Final Report. Washington, D.C. 40 p. Available at http://www.fishwildlife.org/files/Effectiveness-Measures-Report_2011.pdf.

Atlantic Coast Joint Venture. 2005. North American Waterfowl Management Plan: Atlantic Coast Joint Venture Waterfowl Implementation Plan Revision. Available at http://www.acjv.org/wip/acjv_wip_main.pdf.

Belo, B. 2003. Natural Hazard Mitigation Planning For Karst Terrains in Virginia. Virginia Polytechnic Institute and State University. Available at http://scholar.lib.vt.edu/theses/available/etd-05222003-230312/unrestricted/etd.pdf.

Blue Ridge Environmental Solutions. 2011. Upper York River Basin Watershed Implementation Plan. Available at http://www.rrregion.org/pdf/TMDLs/York%20IP/York_Public_Plan_DRAFT2.pdf.

Boicourt, K. and Z. Johnson (eds.). 2010. Comprehensive Strategy for Reducing Maryland's Vulnerability to Climate Change, Phase II: Building Societal, Economic, and Ecological Resilience. Report of the Maryland Commission on Climate Change, Adaptation and Response and Scientific and Technical Working Groups. University of Maryland Center for Environmental Science, Cambridge, Maryland and Maryland Department of Natural Resources, Annapolis, Maryland. Available at http://www.dnr.state.md.us/climatechange/climatechange_phase2_adaptation_strategy.pdf.

Carver, E. and J. Caudill. 2013. Banking on Nature: The Economic Benefits to Local Communities of National Wildlife Refuge Visitation. U.S. Fish and Wildlife Service.

Chesapeake Bay Foundation. 2014. State of the Bay Report. Annapolis, MD. Available at http://www.cbf.org/document.doc?id=2289.

Ciminelli, J. and J. Scrivani. 2007. Virginia Conservation Lands Needs Assessment Virginia Watershed Integrity Model. Virginia Department of Conservation and Recreation, Natural Heritage Program. Available at http://www.dcr.virginia.gov/natural_heritage/documents/WatershedIntegrityModel.pdf.

Craine, J.M., T.W. Ocheltree, J. B. Nippert, E.G. Towne, A.M. Skibbe, S.W. Kembel, and J.E. Fargione. 2013. Global diversity of drought tolerance and grassland climate-change resilience. Nature Climate Change: 3. 63–67.

Glick, P., J. Clough, and B. Nunley. 2008. Sea-Level Rise and Coastal Habitats in the Chesapeake Bay Region: Technical Report. National Wildlife Federation. Available at http://www.nwf.org/pdf/Reports/SeaLevelRiseandCoastalHabitats_ChesapeakeRegion.pdf.

Governor's Commission on Climate Change. 2008. A Final Report: Climate Action Plan. Available at http://www.sealevelrisevirginia.net/main CCC files/.

Hemond, H. F. and J. Benoit. 1986. Cumulative Impacts on Water Quality Functions of Wetlands. Environmental Management Vol. 12. No. 5, pp. 639-653.

Kane, A. 2013. Managing Coastal Watersheds to Address Climate Change: Vulnerability Assessment and Adaptation Options for the Middle Patuxent Subwatershed of the Chesapeake Bay. National Wildlife Federation. Available at http://www.nwf.org/pdf/Climate-Smart-

Conservation/Middle % 20 Patux ent % 20 Subwatershed % 20 Vulnerability % 20 Assessment % 20 and % 20 Adaptation % 20 Patux ent % 20 Patux

King, D. and D. Finch. 2013. The Effects of Climate Change on Terrestrial Birds of North America. U.S. Department of Agriculture, Forest Service, Climate Change Resource Center. Available at http://www.fs.usda.gov/ccrc/topics/wildlife/birds.

McKelvey, K., R. Perry, and L. Mills. 2013. The Effects of Climate Change on Mammals. U.S. Department of Agriculture, Forest Service, Climate Change Resource Center. Available at http://www.fs.fed.us/ccrc/topics/wildlife/mammals/index.shtml.

Martin, E. and C. Apse. 2013. Chesapeake Fish Passage Prioritization: An Assessment of Dams in the Chesapeake Bay Watershed. The Nature Conservancy, Eastern Division Conservation Science. Available at http://maps.tnc.org/erof_ChesapeakeFPP.

Melillo, J., T. Richmond, and G. Yohe (eds.). 2014. Climate Change Impacts in the United States: The Third National Climate Assessment. U.S. Global Change Research Program.

Najjar, R., C. Pyke, M.B. Adams, D. Breitburg, C. Hershner, M. Kemp, R. Howarth, M. Mulholland, M. Paolisso, D. Secor, K. Sellner, D. Wardrop, and R. Wood. 2010. Potential climate-change impacts on the Chesapeake Bay. Estuarine, Coastal and Shelf Science 86: 1–20.

Oehler, J.D., D.F. Covell, S. Capel, and B. Long. 2006. Managing Grasslands, Shrublands, and Young Forest Habitats for Wildlife: A Guide for the Northeast. The Northeast Upland Habitat Technical Committee & Massachusetts Division of Fisheries & 9 of 9 Wildlife. 148pp. Available at http://www.wildlife.state.nh.us/Wildlife/Northeast_Hab_Mgt_Guide.htm.

Puckett, K.M., P. Keyser, J. Johnson, H. Haney, G. Gray, C. Godfrey, S. Warner, and S. Capel. 2008. Managing Pines for Profit and Wildlife. Wildlife Information Publication No. 98-1. Virginia Department of Game and Inland Fisheries. Available at http://www.dgif.virginia.gov/quail/managing-pines-smaller.pdf.

Pyke, C., R. Najjar, M.B. Adams, D. Breitburg, M. Kemp, C. Hershner, R. Howarth, M. Mulholland, M. Paolisso, D. Secor, K. Sellner, D. Wardrop, and R. Wood. 2008. Climate Change and the Chesapeake Bay: State-of-the-Science Review and Recommendations. A Report from the Chesapeake Bay Program Science and Technical Advisory Committee. Annapolis, MD.

Rivanna River Basin Commission. 2012. Moores Creek Bacteria Implementation Plan 2012 Update. Available at

http://www.deq.virginia.gov/portals/0/deq/water/tmdl/implementationplans/mooresip.pdf.

Southeast Aquatic Resources Partnership (SARP). 2014. Risk of Flow Alteration from Impervious Surface in Local Catchments of the SARP Region. This dataset was produced for the Southern Instream Flow Network with funding from the Gulf Coast Prairie and South Atlantic Landscape Conservation Cooperatives. Available at http://databasin.org/datasets/f49cb20b542b4e98b07cb98d1423f1fa.

Staudinger, M., T. L. Morelli, and A. M. Bryan. (eds.). 2015. Integrating Climate Change into Northeast and Midwest State Wildlife Action Plans. DOI Northeast Climate Science Center Report, Amherst, MA.

U.S. Census Bureau: State and County QuickFacts. Data derived from Population Estimates, American Community Survey, Census of Population and Housing, State and County Housing Unit Estimates, County Business Patterns, Nonemployer Statistics, Economic Census, Survey of Business Owners, Building Permits. Available at http://quickfacts.census.gov/qfd/states/51000.html (Accessed 11 March 2015).

Veni, G., H. DuChene, N. Crawford, C. Groves, G. Huppert, E. Kastning, R. Olson, and B. Wheeler. 2001. Living with Karst: A Fragile Foundation. American Geological Institute. Available at http://www.americangeosciences.org/sites/default/files/karst.pdf.

Virginia Department of Conservation and Recreation (DCR). 2008. Natural Heritage Resources Fact Sheet Karst Resources of the Shenandoah and Potomac River Basins. Available at http://www.dcr.virginia.gov/natural heritage/documents/Shenandoah Potomac2008.pdf.

Virginia Department of Conservation and Recreation (DCR). 2013. Virginia Outdoors Plan. Available at http://www.dcr.virginia.gov/recreational_planning/vop.shtml.

Virginia Department of Conservation and Recreation (DCR). 2014. Program Year 2015 Virginia Agricultural Cost Share Program (VACS) BMP Manual. Virginia Soil and Water Conservation Board, Virginia Department of Conservation and Recreation. Available at http://dswcapps.dcr.virginia.gov/htdocs/agbmpman/csmanual.pdf

Virginia Department of Conservation and Recreation, Natural Heritage (DCR, Natural Heritage). 2014. Virginia Conservation Lands Database website. Available at http://www.dcr.virginia.gov/land_conservation/tools02a.shtml.

Virginia Department of Conservation and Recreation (DCR). 2015. Virginia Natural Heritage Karst Program Cave and Karst Protection website. Available at http://www.dcr.virginia.gov/natural_heritage/karsthome.shtml. Accessed 17 Marsh 2015.

Virginia Department of Environmental Quality (DEQ). 2011. Comprehensive Wetland Program Plan Commonwealth of Virginia. Submitted to U.S. Environmental Protection Agency. http://water.epa.gov/type/wetlands/upload/virginia_wpp.pdf

Virginia Department of Environmental Quality (DEQ) and Virginia Department of Conservation and Recreation (DCR). 2013. Rockfish Valley Watershed Improvement Plan. Available at http://www.deq.virginia.gov/Portals/0/DEQ/Water/TMDL/ImplementationPlans/rockfishpub.pdf.

Virginia Department of Environmental Quality (DEQ). 2014a. Virginia Water Quality Assessment 305(b)/303(d) Integrated Report 2014 to Congress and the EPA Administrator for the Period January 1, 2007 to December 31, 2012. Available at

http://www.deq.virginia.gov/Programs/Water/WaterQualityInformationTMDLs/WaterQualityAssessments/2014305(b)303(d)IntegratedReport.aspx.

Virginia Department of Environmental Quality. 2014b. Water Quality Improvement Plan for Tye River, Hat Creek, Rucker Run, and Piney River – A Plan to Reduce Bacteria in the Water. Available at http://www.deq.virginia.gov/Portals/0/DEQ/Water/TMDL/ImplementationPlans/Tye_Public_Document.pdf.

Virginia Department of Forestry (DOF). 2014. Virginia Forest Stewardship Plan Appendix. Available at http://www.dof.virginia.gov/manage/stewardship/introduction.htm.

Virginia Department of Game and Inland Fisheries (DGIF). 2005. Virginia Comprehensive Wildlife Conservation Strategy. Available at http://www.bewildvirginia.org.

Virginia Department of Game and Inland Fisheries, Wildlife Division, Small Game Committee (DGIF). 2007. Northern Bobwhite Quail Action Plan for Virginia. Available at http://www.dgif.virginia.gov/wildlife/quail/action-plan/quail-action-plan.pdf.

Virginia Department of Game and Inland Fisheries (DGIF). 2015a. Virginia Deer Management Plan, 2015-2024. Available at http://www.dgif.virginia.gov/wildlife/deer/management-plan/draft/2015-2024-draft-virginia-deer-management-plan.pdf.

Virginia Department of Game and Inland Fisheries (DGIF). 2015b. The Bobwhite Quail in Virginia website. Available at http://www.dgif.virginia.gov/quail.

Virginia Invasive Species Working Group (VISWG). 2012. Twelve Invasive Species of High Concern in Virginia. Virginia Department of Conservation and Recreation. Available at http://www.dcr.virginia.gov/natural_heritage/vaisc/documents/VISWG-Invasives-Brochure.pdf.

Virginia Tech Department of Biological Systems Engineering (Virginia Tech). 2012. Draft Moores Creek, Lodge Creek, Meadow Creek, and Schenks Branch Watersheds TMDL Implementation Plan. Available at http://www.deq.virginia.gov/Portals/0/DEQ/Water/TMDL/ImplementationPlans/Drafts/mooresip.pdf.

Weber, J. T. and J. F. Bulluck 2014. Virginia Wetlands Catalog: An Inventory of Wetlands and Potential Wetlands with Prioritization Summaries for Conservation and Restoration Purposes by Parcel, Subwatershed, and Wetland Boundaries. Natural Heritage Technical Report 14-4. Virginia Department of Conservation and Recreation, Division of Natural Heritage. Richmond, Virginia 49 pp.

Wolter, F., S. Capel, D. Pashley, and S. Heath. 2008. Managing Land in the Piedmont of Virginia for the Benefit of Birds and Other Wildlife. American Bird Conservancy. Available at http://www.abcbirds.org/newsandreports/special_reports/PiedmontEnviroCouncil.pdf.

The Xerces Society. 2011. Attracting Native Pollinators – Protecting North America's Bees and Butterflies. Storey Publishing. 371 pp.

Appendix A. Complete List of Species of Greatest Conservation Need in Thomas Jefferson Planning Region

Complete SGCN list for the Thomas Jefferson Planning Region (SGCN=88). Table includes federal and state statuses, Wildlife Action Plan Tier, and Conservation Opportunity Rankings. Species are listed in alphabetical order by taxa.

Таха	Conservation Status	Tier	Opportunity Ranking	Common Name	Scientific Name
Amphibian		IV	а	Eastern mud salamander	Pseudotriton montanus montanus
Amphibian		IV	С	Eastern spadefoot	Scaphiopus holbrookii
Amphibian	SE	II	a	Eastern tiger salamander	Ambystoma tigrinum
Amphibian		IV	a	Jefferson salamander	Ambystoma jeffersonianum
Amphibian		II	a	Mole salamander	Ambystoma talpoideum
Bird		II	a	American black duck	Anas rubripes
Bird		II	a	American woodcock	Scolopax minor
Bird		IV	С	Appalachian cottontail	Sylvilagus obscurus
Bird		Ш	a	Barn owl	Tyto alba
Bird		III	b	Belted kingfisher	Megaceryle lcyon
Bird		IV	а	Black-and-white warbler	Mniotilta varia
Bird		IV	a	Brown thrasher	Toxostoma rufum
Bird		IV	b	Canada warbler	Wilsonia canadensis
Bird		II	а	Cerulean warbler	Dendroica cerulea
Bird		IV	b	Chimney swift	Chaetura pelagica
Bird		II	а	Common tern	Sterna hirundo
Bird		IV	а	Dunlin	Calidris alpina hudsonia
Bird		IV	а	Eastern kingbird	Tyrannus tyrannus
Bird		IV	а	Eastern meadowlark	Sturnella magna
Bird		IV	а	Eastern towhee	Pipilo erythrophthalmus
Bird		III	а	Eastern Whip-poor-will	Caprimulgus vociferus
Bird		IV	b	Eastern wood-pewee	Contopus virens
Bird		IV	a	Field sparrow	Spizella pusilla
Bird		I	a	Glossy ibis	Plegadis falcinellus
Bird		IV	a	Grasshopper sparrow	Ammodramus savannarum
Bird		IV	а	Gray catbird	Dumetella carolinensis
Bird		IV	a	Greater scaup	Aythya marila
Bird		IV	b	Green heron	Butorides virescens
Bird		III	a	Kentucky warbler	Oporornis formosus

Bird		III	b	Least bittern	Ixobrychus exilis
Bird		III	a	Northern bobwhite	Colinus virginianus
Bird		III	a	Northern harrier	Circus cyaneus
Bird		IV	С	Northern rough-winged swallow	Stelgidopteryx serripennis
Bird		I	b	Northern saw-whet owl	Aegolius acadicus
Bird		III	a	Ruffed grouse	Bonasa umbellus
Bird		IV	b	Rusty blackbird	Euphagus carolinus
Bird		IV	b	Wood thrush	Hylocichla mustelina
Bird		III	a	Yellow-billed cuckoo	Coccyzus americanus
Bird		IV	a	Yellow-breasted chat	Icteria virens
Crustacean	FSST	I	b	Madison Cave amphipod	Stygobromus stegerorum
Crustacean	FTST	II	С	Madison Cave isopod	Antrolana lira
Fish		IV	a	Alewife	Alosa pseudoharengus
Fish		IV	b	Allegheny pearl dace	Margariscus margarita
Fish		IV	С	American brook lamprey	Lampetra appendix
Fish		III	a	American eel	Anguilla rostrata
Fish		IV	a	American shad	Alosa sapidissima
Fish		IV	a	Brook trout	Salvelinus fontinalis
Fish		IV	С	Least brook lamprey	Lampetra aepyptera
Fish		IV	С	Mud sunfish	Acantharchus pomotis
Fish	FS	I	b	Roughhead shiner	Notropis semperasper
Fish		IV	С	Slimy sculpin	Cottus cognatus
FW Mollusk	FSST	I	a	Atlantic pigtoe	Fusconaia masoni
FW Mollusk		IV	С	Atlantic spike	Elliptio producta
FW Mollusk		III	С	Blue Ridge springsnail	Fontigens orolibas
FW Mollusk	SE	I	a	Brook floater	Alasmidonta varicosa
FW Mollusk		IV	С	Carolina lance mussel	Elliptio angustata
FW Mollusk		IV	а	Creeper	Strophitus undulatus
FW Mollusk	FESE	I	а	Dwarf wedgemussel	Alasmidonta heterodon
FW Mollusk	ST	II	а	Green Floater	Lasmigona subviridis
FW Mollusk	FESE	I	а	James spinymussel	Pleurobema collina
FW Mollusk		IV	b	Northern lance mussel	Elliptio fisheriana
FW Mollusk		III	а	Notched rainbow	Villosa constricta
FW Mollusk		IV	а	Triangle floater	Alasmidonta undulata
FW Mollusk		II	а	Yellow lampmussel	Lampsilis cariosa
FW Mollusk	FS	II	a	Yellow lance	Elliptio lanceolata
				Appalachian grizzled skipper	Pyrgus wyandot
Insect	FSST	I	С	Apparachian grizzied skipper	Fyrgus wyunuot

Insect	FSSE	I	С	Virginia Piedmont water boatman	Sigara depressa
Mammal		IV	С	Allegheny woodrat	Neotoma magister
Mammal		I	С	Eastern small-footed myotis	Myotis leibii
Mammal		IV	С	Eastern spotted skunk	Spilogale putorius putorius
Mammal		IV	С	Long-tailed shrew	Sorex dispar dispar
Mammal	SE	I	a	Rafinesque's eastern big-eared bat	Corynorhinus rafinesquii macrotis
Mammal	FESE	II	a	Virginia big-eared bat	Corynorhinus townsendii virginianus
Other Terrestrial Invertebrate	FS	II	С	Cave pseudoscorpion	Apochthonius coecus
Other Terrestrial Invertebrate		III	С	Depressed glyph	Glyphyalinia virginica
Other Terrestrial Invertebrate		III	С	Variable mantleslug	Pallifera varia
Reptile		IV	a	Common ribbonsnake	Thamnophis sauritus sauritus
Reptile		III	a	Eastern box turtle	Terrapene carolina carolina
Reptile		IV	С	Eastern hog-nosed snake	Heterodon platirhinos
Reptile		IV	a	Eastern slender glass lizard	Ophisaurus attenuatus Iongicaudus
Reptile		I	a	Northern pinesnake	Pituophis melanoleucus melanoleucus
Reptile		IV	a	Queen snake	Regina septemvittata
Reptile		IV	a	Rainbow snake	Farancia erytrogramma erytrogramma
Reptile		IV	a	Scarletsnake	Cemophora coccinea copei
Reptile		III	a	Smooth greensnake	Opheodrys vernalis
Reptile		IV	С	Southeastern crowned snake	Tantilla coronata
				6 1	0' '' '
Reptile	СС	III	a	Spotted turtle	Clemmys guttata

APPENDIX B. SGCN SPATIAL ANALYSIS METHODS

Analysis Units

The species data was analyzed within three spatial units for Virginia: county, planning region, and hydrologic unit (HUC12). The source spatial data for these units were provided by Virginia Department of Game and Inland Fisheries (DGIF). The analysis extent was constrained to that of the Virginia counties, so that portions of the planning region and HUC12 units falling outside of the county boundaries were eliminated from the analysis. Each of the 21 planning region units was assigned an alphabetic code (e.g. Accomack-Northampton = "ACNO"). Nottoway County does not fall within the jurisdiction of any Virginia planning region and was not included in any of our analyses.

Species Data

The source data for the species analysis consisted of three datasets, all of which were provided by DGIF: aquatic tier I-II plus species, terrestrial potential and confirmed species, and peer-reviewed HUC12 species. Within these datasets, individual species are identified by Biota of Virginia (BOVA) code.

Methods

Aquatic Species

The aquatic species are represented in the source dataset by linear stream segments, or reaches. For each BOVA code present, the total length was calculated for all assigned reaches within the analysis extent. The dataset was then divided by the three analysis units, and the total BOVA length was summarized again by county, planning region, and HUC12. The BOVA percent of total length was calculated by dividing the species length for the analysis unit by the total species length.

Terrestrial Species

The terrestrial species are represented in the source dataset by area. For each BOVA code present, the total area was calculated within the analysis extent. The dataset was then divided by the three analysis units, and the total BOVA area was summarized again by county, planning region, and HUC12. The BOVA percent of total area was calculated by dividing the species area for the analysis unit by the total species area in Virginia.

Peer-Reviewed HUC12 Species

The peer-reviewed species are represented in the source dataset by 6th order hydrologic units. For each BOVA code present, the total area was calculated within the analysis extent. The dataset was then divided by the county and planning region analysis units, and the total BOVA area was summarized by county, planning region, and HUC12. The BOVA percent of total area was calculated by dividing the species area for the analysis unit by the total species area.

Priority SGCN

For each planning region, priority species were identified as those SGCNs with a total planning region unit area or length ≥ 10% of the total SGCN area or length for Virginia. SGCN unit calculations were drawn from only one of the source datasets: if an SGCN was present in both the aquatic dataset and the HUC12 dataset, then the aquatic dataset took preference; and if an SGCN was present in the terrestrial dataset and the HUC12 dataset, then the terrestrial dataset took preference.